

PRESENTATION

8th Arab-Hellenic Economic Forum

Water Reuse:

The Neglected
Opportunity in the
Arab World

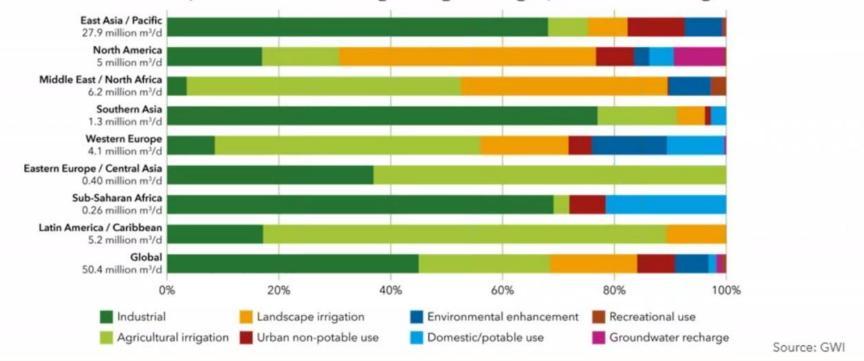
Date

27-28 November 2019


Location

Arab Hellenic Economic Forum

Presenter Ghassan Ejjeh


Global Water Reuse-Low in MENA

Water reuse: installed capacity by reuse application 2010-2017

- Industry has overtaken agriculture as the largest user of treated wastewater, particularly in Asia
- Agricultural/landscape irrigation remains a key application for water reuse
- Potable reuse represents a small but growing and high-profile market segment

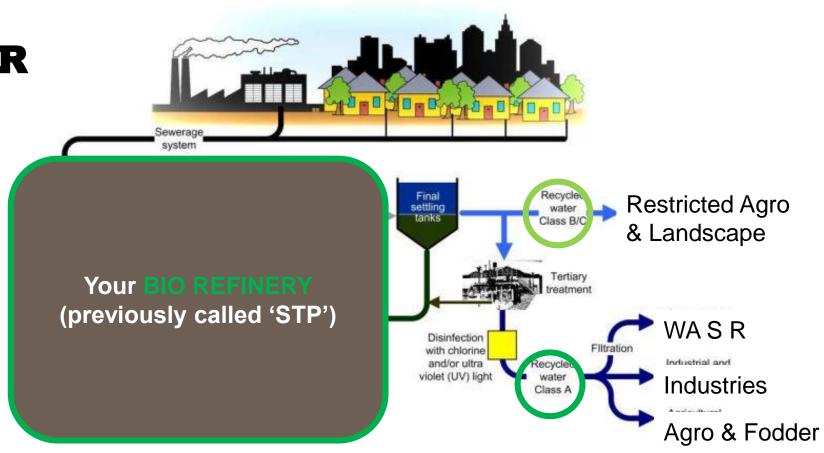
CHALLENGES	CURRENT PRACTISE	OPPORTUNITIES
Limited Natural ResourceCostly Desalination	☐ Subsidized Tariff☐ Individual Desalination	✓ Close the loop✓ Reuse Water

If every human would use the same amount of water that is used by population of the Middle East, we will need the water supply of 5.5 planet Earth

Sustainability GOALS

CHALLENGES	CURRENT PRACTISE	OPPORTUNITIES
Limited Natural & Costly Desal Resource	☐ Subsidized Tariff & Individual Desalination	✓ Realize True Value & Close Boreholes
Inefficient Allocation & Use of TSE	☐ Irrigation: Recreation & Agricultural Use	✓ Allocate for Industrial Use
Weak Regulatory Framework	☐ Government Finance & Manage Alone	✓ Engage Private Sector& Realize Sustainability
Seasonal Demand Fluctuation	☐ Non-RevenueDischarge of TSE to theSea	✓ Integrated WASR System Using Class A Water

Slide /5


Reuse Water-BIO REFINERY WATER

Definition

BIO REFINERY

From Wikipedia

A bio refinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, heat, and value-added chemicals from biomass.

It's "BIO REFINERY WATER" (BRW)

"WATER RECYCLING IS PART OF NATURE"

BRW POTENTIAL

RESOURCE

FIGURE 3.2

100% Value

BIO REFINERY WATER

1,000 gallons of wastewater contains the equivalent of \$1.88* worth of fertilizer, energy as methane, beneficial organic matter for soils (like compost), and clean water

*~\$0.41 (AED 1.51) per m3

"EVERY DROP COUNTS"

Overview of waste resources and potentials for improved management and recovery

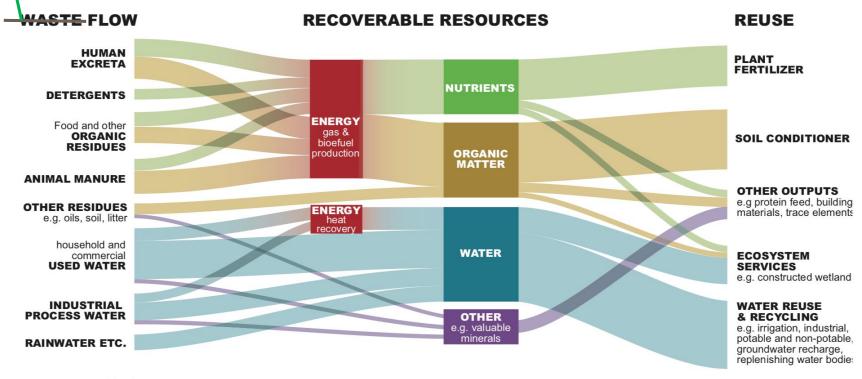


Figure: Stockholm Environment Institute

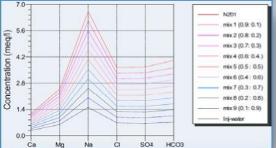
BIO REFINERY WATER

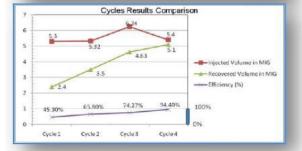
AQUIFER STORAGE & RECOVERY (WASR) #1 Reference in Middle East

✓ The SHARJAH Model & Opportunities with BRW

Total Integration Using WASR

THE MODEL

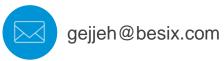



- √ 2001-02 feasibility, 2003-04 pilot project
- ✓ Aquifer Storage and Recovery of water
- ✓ System efficiency: 95% recovery
- ✓ Cost efficiency: 10% of surface storage

THE OPPORTUNITY

- > To use WASR for TSE/BRW from the STP
- Produce Class A BRW Quality
- > Locate BRW Production at strategic point
- Reuse as potable water through WASR
- Realize true value

SUSTAINABILITY GOALS ACHIEVED TOGETHER



Ghassan EJJEH

Sr. Vice President

